Source code for mdpy.constraint.charmm_dihedral_constraint

#!/usr/bin/env python
# -*- encoding: utf-8 -*-
"""
file : charmm_dihedral_constraint.py
created time : 2021/10/11
author : Zhenyu Wei
copyright : (C)Copyright 2021-present, mdpy organization
"""

import math
import numpy as np
import numba as nb
import numba.cuda as cuda
from mdpy import SPATIAL_DIM
from mdpy.core import Ensemble
from mdpy.environment import *
from mdpy.constraint import Constraint
from mdpy.utils import *
from mdpy.unit import *

THREAD_PER_BLOCK = 32


[docs]class CharmmDihedralConstraint(Constraint):
[docs] def __init__(self, parameter_dict: dict) -> None: super().__init__() self._parameter_dict = parameter_dict self._int_parameters = [] self._float_parameters = [] self._num_dihedrals = 0 # Kernel self._update = cuda.jit( nb.void( NUMBA_INT[:, ::1], # int_parameters NUMBA_FLOAT[:, ::1], # float_parameters NUMBA_FLOAT[:, ::1], # positions NUMBA_FLOAT[:, ::1], # pbc_matrix NUMBA_FLOAT[:, ::1], # forces NUMBA_FLOAT[::1], # potential_energy ) )(self._update_charmm_dihedral_kernel)
def __repr__(self) -> str: return "<mdpy.constraint.CharmmDihedralConstraint object>" def __str__(self) -> str: return "Dihedral constraint" def bind_ensemble(self, ensemble: Ensemble): self._parent_ensemble = ensemble self._constraint_id = ensemble.constraints.index(self) self._int_parameters = [] self._float_parameters = [] self._num_dihedrals = 0 for dihedral in self._parent_ensemble.topology.dihedrals: dihedral_type = "%s-%s-%s-%s" % ( self._parent_ensemble.topology.particles[dihedral[0]].particle_type, self._parent_ensemble.topology.particles[dihedral[1]].particle_type, self._parent_ensemble.topology.particles[dihedral[2]].particle_type, self._parent_ensemble.topology.particles[dihedral[3]].particle_type, ) for float_param in self._parameter_dict[dihedral_type]: # matrix_id of 4 particles which form the dihedral self._int_parameters.append( [ self._parent_ensemble.topology.particles[dihedral[0]].matrix_id, self._parent_ensemble.topology.particles[dihedral[1]].matrix_id, self._parent_ensemble.topology.particles[dihedral[2]].matrix_id, self._parent_ensemble.topology.particles[dihedral[3]].matrix_id, ] ) # dihedral coefficient self._float_parameters.append(float_param) self._num_dihedrals += 1 self._device_int_parameters = cp.array( np.vstack(self._int_parameters), CUPY_INT ) self._device_float_parameters = cp.array( np.vstack(self._float_parameters), CUPY_FLOAT ) self._block_per_grid = int( np.ceil(self._parent_ensemble.topology.num_dihedrals / THREAD_PER_BLOCK) ) @staticmethod def _update_charmm_dihedral_kernel( int_parameters, float_parameters, positions, pbc_matrix, forces, potential_energy, ): dihedral_id = cuda.grid(1) num_dihedrals = int_parameters.shape[0] if dihedral_id >= num_dihedrals: return None shared_pbc = cuda.shared.array((SPATIAL_DIM), NUMBA_FLOAT) shared_half_pbc = cuda.shared.array((SPATIAL_DIM), NUMBA_FLOAT) if cuda.threadIdx.x == 0: shared_pbc[0] = pbc_matrix[0, 0] shared_pbc[1] = pbc_matrix[1, 1] shared_pbc[2] = pbc_matrix[2, 2] shared_half_pbc[0] = shared_pbc[0] * 0.5 shared_half_pbc[1] = shared_pbc[1] * 0.5 shared_half_pbc[2] = shared_pbc[2] * 0.5 cuda.syncthreads() particle_ids = cuda.local.array((4), NUMBA_INT) local_positions = cuda.local.array((4, SPATIAL_DIM), NUMBA_FLOAT) for i in range(4): particle_ids[i] = int_parameters[dihedral_id, i] local_positions[i, 0] = positions[particle_ids[i], 0] local_positions[i, 1] = positions[particle_ids[i], 1] local_positions[i, 2] = positions[particle_ids[i], 2] k, n, delta = float_parameters[dihedral_id, :] v12 = cuda.local.array((SPATIAL_DIM), NUMBA_FLOAT) v23 = cuda.local.array((SPATIAL_DIM), NUMBA_FLOAT) vo3 = cuda.local.array((SPATIAL_DIM), NUMBA_FLOAT) v34 = cuda.local.array((SPATIAL_DIM), NUMBA_FLOAT) r12, r23, ro3_square, r34 = 0, 0, 0, 0 for i in range(SPATIAL_DIM): v12[i] = local_positions[1, i] - local_positions[0, i] if v12[i] >= shared_half_pbc[i]: v12[i] -= shared_pbc[i] elif v12[i] <= -shared_half_pbc[i]: v12[i] += shared_pbc[i] r12 += v12[i] ** 2 v23[i] = local_positions[2, i] - local_positions[1, i] if v23[i] >= shared_half_pbc[i]: v23[i] -= shared_pbc[i] elif v23[i] <= -shared_half_pbc[i]: v23[i] += shared_pbc[i] r23 += v23[i] ** 2 vo3[i] = v23[i] * 0.5 ro3_square += vo3[i] ** 2 v34[i] = local_positions[3, i] - local_positions[2, i] if v34[i] >= shared_half_pbc[i]: v34[i] -= shared_pbc[i] elif v34[i] <= -shared_half_pbc[i]: v34[i] += shared_pbc[i] r34 += v34[i] ** 2 r12 = math.sqrt(r12) r23 = math.sqrt(r23) r34 = math.sqrt(r34) # Dihedral n1 = cuda.local.array((SPATIAL_DIM), NUMBA_FLOAT) # v12 x v23 n1[0] = v12[1] * v23[2] - v12[2] * v23[1] n1[1] = -v12[0] * v23[2] + v12[2] * v23[0] n1[2] = v12[0] * v23[1] - v12[1] * v23[0] rn1 = math.sqrt(n1[0] ** 2 + n1[1] ** 2 + n1[2] ** 2) n2 = cuda.local.array((SPATIAL_DIM), NUMBA_FLOAT) # v23 x v34 n2[0] = v23[1] * v34[2] - v23[2] * v34[1] n2[1] = -v23[0] * v34[2] + v23[2] * v34[0] n2[2] = v23[0] * v34[1] - v23[1] * v34[0] rn2 = math.sqrt(n2[0] ** 2 + n2[1] ** 2 + n2[2] ** 2) x, y = 0, 0 for i in range(SPATIAL_DIM): x += v12[i] * n2[i] y += n1[i] * n2[i] x *= r23 theta = math.atan2(x, y) # Angles cos_theta_123, cos_theta_234 = 0, 0 for i in range(SPATIAL_DIM): cos_theta_123 -= v12[i] * v23[i] cos_theta_234 -= v23[i] * v34[i] cos_theta_123 /= r12 * r23 cos_theta_234 /= r23 * r34 # Force factor = n * theta - delta force_val = -k * (1 - n * math.sin(factor)) local_forces = cuda.local.array((4, SPATIAL_DIM), NUMBA_FLOAT) r12_times_sin_theta_123 = r12 * math.sqrt(1 - cos_theta_123**2) r34_times_sin_theta_234 = r34 * math.sqrt(1 - cos_theta_234**2) for i in range(SPATIAL_DIM): # force_1 = force_val / (r12 * np.sin(theta_123)) * get_unit_vec(np.cross(-v12, v23)) local_forces[0, i] = force_val / r12_times_sin_theta_123 * (-n1[i] / rn1) # force_4 = force_val / (r34 * np.sin(theta_234)) * get_unit_vec(np.cross(v34, -v23)) local_forces[3, i] = force_val / r34_times_sin_theta_234 * (n2[i] / rn2) # forces[2, i] = np.cross( # -(np.cross(vo3,force_4)+np.cross(v34,force_4)/2+np.cross(-v12, force_1)/2), vo3 # ) / ro3**2 torque = cuda.local.array((SPATIAL_DIM), NUMBA_FLOAT) torque[0] = -( (vo3[1] * local_forces[3, 2] - vo3[2] * local_forces[3, 1]) + (v34[1] * local_forces[3, 2] - v34[2] * local_forces[3, 1]) * 0.5 - (v12[1] * local_forces[0, 2] - v12[2] * local_forces[0, 1]) * 0.5 ) torque[1] = -( -(vo3[0] * local_forces[3, 2] - vo3[2] * local_forces[3, 0]) - (v34[0] * local_forces[3, 2] - v34[2] * local_forces[3, 0]) * 0.5 + (v12[0] * local_forces[0, 2] - v12[2] * local_forces[0, 0]) * 0.5 ) torque[2] = -( (vo3[0] * local_forces[3, 1] - vo3[1] * local_forces[3, 0]) + (v34[0] * local_forces[3, 1] - v34[1] * local_forces[3, 0]) * 0.5 - (v12[0] * local_forces[0, 1] - v12[1] * local_forces[0, 0]) * 0.5 ) local_forces[2, 0] = (torque[1] * vo3[2] - torque[2] * vo3[1]) / ro3_square local_forces[2, 1] = -(torque[0] * vo3[2] - torque[2] * vo3[0]) / ro3_square local_forces[2, 2] = (torque[0] * vo3[1] - torque[1] * vo3[0]) / ro3_square for i in range(SPATIAL_DIM): local_forces[1, i] = -( local_forces[0, i] + local_forces[2, i] + local_forces[3, i] ) energy = k * (1 + math.cos(factor)) for i in range(4): for j in range(SPATIAL_DIM): cuda.atomic.add(forces, (particle_ids[i], j), local_forces[i, j]) cuda.atomic.add(potential_energy, (0), energy) def update(self): self._check_bound_state() # V(dihedral) = Kchi(1 + cos(n(chi) - delta)) self._forces = cp.zeros(self._parent_ensemble.state.matrix_shape, CUPY_FLOAT) self._potential_energy = cp.zeros([1], CUPY_FLOAT) # Device self._update[self._block_per_grid, THREAD_PER_BLOCK]( self._device_int_parameters, self._device_float_parameters, self._parent_ensemble.state.positions, self._parent_ensemble.state.device_pbc_matrix, self._forces, self._potential_energy, ) @property def num_dihedrals(self): return self._num_dihedrals